Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2020.

Supporting Information

for Adv. Electron. Mater., DOI: 10.1002/aelm.202000059

Graphene Field-Effect Transistors on Hexagonal-Boron Nitride for Enhanced Interfacial Thermal Dissipation

Donghua Liu, Xiaosong Chen, Ying Zhang, Dingguan Wang, Yan Zhao, Huisheng Peng, Yunqi Liu, Xiangfan Xu,* Andrew Thye Shen Wee, and Dacheng Wei* Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2016.

Supporting Information

Graphene Field-Effect Transistors on Hexagonal-Boron Nitride for Enhanced Interfacial Thermal Dissipation

Donghua Liu, Xiaosong Chen, Ying Zhang, Dingguan Wang, Yan Zhao, Huisheng Peng, Yunqi Liu, Xiangfan Xu,^{*} Andrew Thye Shen Wee, and Dacheng Wei^{*}

1. Experimental details of carrier mobility calculation

The mobility was calculated from the linear regime of the transfer characteristics using the equation:

$$\mu = (\frac{L}{WC_i V_{ds}})(\frac{\Delta I_{ds}}{\Delta V_g})$$

Where C_i is the gate capacitance of the dielectrics, I_{ds} is the drain-source current, V_g is the gate voltage, and μ is the field-effect mobility. $\Delta I_{ds}/\Delta V_g$ was calculated from the slope between V_g = -60 V and V_{Dirac} (V_g at Dirac point).

The *h*-BN/SiO₂/Si has two dielectric layers. The thickness of SiO₂ used in this work is 300 nm, while the thickness of the *h*-BN is about 0.85 nm. The C_i of 300 nm SiO₂ is about 10 nF cm⁻². The capacitance of *h*-BN was calculated by:

$$C_{h-BN} = \mathbf{k} \varepsilon_0 / \mathbf{d}$$

where k is the dielectric constant of *h*-BN (the value is about 4.0), ε_0 is the permittivity, and d is the thickness of *h*-BN. As a result, the C_i of *h*-BN was about 4164 nF cm⁻².

Therefore, the two-layer system in series contributes to the total capacitance (C_{total}) of 9.98 nF cm⁻² based on the equation:

$$1 / C_{\text{total}} = 1 / C_{\text{SiO2}} + 1 / C_{h-\text{BN}}$$

2. Experimental details of differential 3ω measurement.

WILEY-VCH

A 3 μ m-wide Cr/Au (5 nm/50 nm) electrode was deposit onto graphene, through electron beam lithography and thermal evaporation process. Next, high dose O₂ plasma was used to oxide the graphene layer and remove *h*-BN layer, to make sure that heat dissipates only in vertical direction. This process is crucial for 3 ω measurement where one should assume heat flow only in one direction.

An alternating current (AC) with a frequency of ω is applied on the electrode, which generates a fluctuation of Joule heat power with a frequency of 2ω and also a temperature fluctuation with a frequency of 2ω ($T_{2\omega}$). The resistance of the electrode (R) has a linear dependence with the temperature (T). As a result, an AC voltage with a frequency of 3ω ($V_{3\omega}$) is detected, and the temperature increase of the electrode can be calculated from:

$$T_{2\omega} = 2\frac{\mathrm{d}T}{\mathrm{d}R}\frac{R}{V}V_{3\omega}$$

where V and $V_{3\omega}$ are the measured voltage with frequency of 1 ω and 3 ω , respectively.

The calculated thermal resistance is the sum of the substrate thermal resistance and the interfacial thermal resistance. Therefore, the actual interfacial thermal resistance of P-G/*h*-BN/SiO₂ is lower than calculated thermal resistance. It is difficult to measure the interfacial thermal resistance of P-G/SiO₂ interface and P-G/*h*-BN/SiO₂ interface directly. However, the difference of the interfacial thermal resistance of P-G/SiO₂ interface of P-G/*h*-BN/SiO₂ interface and P-G/*h*-BN/SiO₂ interface and P-G/*h*-BN/SiO₂ interface and P-G/*h*-BN/SiO₂ interface. The differential by differential 3 ω method. To carry out the differential 3 ω method, the electrodes were fabricated both on P-G/SiO₂ interface and P-G/*h*-BN/SiO₂ interface. The differential interfacial thermal resistance can be calculated by:

$$R_{\rm int} = \frac{\Delta T_{2\omega} \cdot S}{P}$$

where R_{int} is differential interfacial thermal resistance between P-G/SiO₂ interface and P-G/*h*-BN/SiO₂ interface, *S* is cross-section area between electrode and P-G, *P* is the Joule heat

WILEY-VCH

power and $\Delta T_{2\omega}$ is the $T_{2\omega}$ difference between P-G/SiO₂ interface and P-G/*h*-BN/SiO₂ interface.

Figure S1. Optical image of *h*-BN film grown on SiO₂/Si by PECVD (30 min).

Figure S2. Raman spectrum of a P-G sheet on *h*-BN/SiO₂/Si.

WILEY-VCH

Figure S3. (a) The optical microscopy image of a P-G FET. (b) Output curve of a P-G FET produced on bare SiO_2/Si . The scale bar is 10 μ m.

Figure S4. (a) Optical image of a P-G FET before and (b) after the current breakdown. (c) I_{ds} - V_{ds} curve of the current breakdown of the P-G FET device on SiO₂/Si. The scale bar is 20 µm in (c).

Figure S5. $T_{3\omega}$ versus ln ω curves of the P-G/*h*-BN (PECVD)/SiO₂ (black) and P-G/*h*-BN (post-growth transferred CVD *h*-BN)/SiO₂ (red) interfaces.